
Hybrid AI/HPC Approaches for Next 
Generation Multi-Trillion-Parameter Models

ScalAH22: 13th Workshop on Latest Advances in Scalable Algorithms for Large-Scale 
Heterogeneous Systems

Phil Brown, VP Scaled Systems 



2ScalAH22 Workshop

“The survival of man depends on the early construction 

of an ultra-intelligent machine.

… defined as a machine that can far surpass all the 

intellectual activities of any man however clever.”

Irving John Good, 1962.
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Capacity machines : cheaper than human, per unit of work.

Capability machines : super-human, at least in specific domains.

Educational effort

AI design

Capability is determined by:

• quantity and quality of training data

• model scale

• effectiveness of representations

• effectiveness of training and inference processes

Valuable AI Computers
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Bigger Models => More Potent AI

Stored information capacity (#parameters) limits what can be computed 

by an AI, given sufficient training.

The computation rate just determines how quickly it can learn and infer.



5ScalAH22 Workshop

Capabilities Emerge with Model Scale

Chowdhery et al, “PaLM: Scaling Language Models with Pathways”, arXiv:2204.02311
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Sense of Humour



7ScalAH22 Workshop

Parametric Scale of a Brain

• Human brains have 100-1000 trillion trainable synaptic weights(1), 

probably highly redundant.

• Hippocampal synapses have a weight resolution of ~4.5 bits(2).

• Artificial neural nets can reuse learned weights convolutionally, and

can specialize to “intellectual activities” more than a human.

• So ultra-intelligence might require less than 100TB of learned state?

(1) Wikipedia.org/wiki/Neuron

(2) Bartol et al, 2015, “Hippocampal spine head sizes are highly precise”, bioRxiv



8ScalAH22 Workshop

Master Learning Algorithm

First-order stochastic gradient descent (SGD) by back-propagation
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1) End-to-end sequential dependencies => no natural pipelining.

2) Major data flow is explicit; little value in automatic caches.

3) O(1 million) SGD iterations, each reading and writing all model and optimizer state:

• SSD endurance is only a few thousand cycles, so all SRAM/DRAM.

• 1 second /iteration ~ 12 days to train; TBytes must be matched by TB/s.

Implications of the Master Learning Algorithm
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Meanwhile, in Silicon…
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6T SRAM

2T logic

Normalized 

density

Silicon Density Scaling

“3nm”

500nm

2000x function density in 25 years

~year of 

product
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Multi-die integration replacing “Moore’s Law” scaling

Intel Ponte Vecchio: 42-die on 2 interposers

Tesla D100 wafer-scale InFO

AMD MI250X: inter-CoWoS buried bridge

Apple M1-Ultra: buried silicon bridge, 

LPDDR5 on substrate

AMD Milan-X: Chip-on-Wafer caches
Graphcore: Wafer-on-Wafer decoupler
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Graphcore Colossus Mk2 IPU

• 59,334,610,787 active transistors

• 7nm process, 14 metals, 86 masks, full reticle 8cm2

• 1472 independent processors = 350Tflop16/s

• 900MiB distributed SRAM ~ 50% die area

• 11TB/s non-blocking inter-tile interconnect

• 1.85GHz mesochronous clock

Tile

Exchange

Link
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First stacked 3D wafer-on-wafer chip  

Logic Wafer + Power Delivery Wafer
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Large AI computers will 

need >1pJ per flop for 

the foreseeable future.
“Moore’s Law”

~66%/year

Silicon Energy Scaling

~18%/year

Constant voltage era

~5%/year?

Performance per Watt

from a fixed silicon area 

(normalized)

finFET

End of Dennard 

scaling at 90nm

~year of 

product



16ScalAH22 Workshop

10 Years of GPU Adaptation to AI

~300x in GPU peak arithmetic over the first AI decade:

(NVIDIA Maxwell 6.6Tflop32/s in 2014 to Hopper 2000Tflop8/s in 2023)

• 16x from matrix multipliers using smaller numbers, fp32 to fp8.

• 8x transistor density, 28nm to 5nm.

• 1.7x clock speed, but 2.8x power, 250W to 700W.

• 1.4x from shifting architecture from graphics to AI.
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What Next?

~300x in GPU peak arithmetic over the first AI decade:

(NVIDIA Maxwell 6.6Tflop32/s in 2014 to Hopper 2000Tflop8/s in 2023)

• 16x from matrix multipliers and smaller numbers, fp32 to fp8.

• 8x transistor density, 28nm to 5nm.

• 1.7x clock speed, but 2.8x power, 250W to 700W.

• 1.4x from shifting architecture from graphics to AI.

Another 2x, over 5+ years?

Tapped out?

Room to be more radical?

Another 2x, at 3x power?
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Total Energy for AI Training

SoTA for “Infrastructure class” AI is ~3pJ/flop, full system, dense isotropic network:

• 1 billion parameters, 20 billion tokens* … 250 chips (100kW) for 1 hour.

• 100 billion parameters, 2 trillion tokens* … 2,500 chips (1MW) for 4 months.

• 1 trillion parameters, 20 trillion tokens* … 25,000 chips (10MW) for 1 year.

(*) Guided by Hoffman et al, “Training Compute-Optimal Large Language Models”, arXiv:2203.15556.

Further progress will require algorithmic innovation



19ScalAH22 Workshop

Brains do Routing

• In a dense isotropic neural network, such as GPT3, every token interacts 

with every weight.

• Brains don’t fire all their neurons in response to every stimulus.

• An efficient AI capable of more that one task, or responsive to more than 

one type of data, must obviously access its “knowledge” selectively.
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Throughput

Dense model

40bn params

80Gflop

Target QoR

Dense model

20bn params

40Gflop

Reduced QoR

Routing model

200bn params

40Gflop

Target QoR

Memory

Trading Memory for Throughput
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Deep Neural Network Scale Evolution

2014

Deep learning

eg. ResNet

Cost of data

Cost of compute

Cost of memory

2018

Unsupervised learning

eg. BERT, GPT

2022

Routing networks

eg. SGMoE, Switch
O(100M) params

O(100G) params

O(100T) params?
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• 2048 Mk3 IPUs ~ 1 real Eflop16/s

• 1PB DRAM at > 2 real PB/s

• ~$50m, 2.5MWatts, 68 standard racks, 100m2

Practical ”Brain-Scale” Computing

Good Computer [mid-size]
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• Silicon scaling is almost done, especially

energy per op.

• Brain-scale dense neural networks are

infeasible; larger models must be sparse.

• Extremely sparse routed brain-scale neural 

networks will be feasible soon.

• The arrival of AI at this ending of “Moore’s Law” 

demands a new era of algorithm and architecture 

co-innovation.

Take-Aways


